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Abstract 

 In biological cells, chemical reaction pathways lead to complex network 

systems like metabolic networks. One experimental approach to the dynamics of such 

systems examines their "sensitivity": each enzyme mediating a reaction in the system is 

increased/decreased or knocked out separately, and the responses in the concentrations 

of chemicals or their fluxes are observed. In this study, we present a mathematical 

method to determine the sensitivity of reaction systems from information on the 

network alone. We investigate how the sensitivity responses of chemicals in a reaction 

network depend on the structure of the network, and on the position of the perturbed 

reaction in the network. We establish and prove some general rules which relate the 

sensitivity response to the structure of the underlying network. We describe a 

hierarchical pattern in the flux response which is governed by branchings in the 

network. We apply our method to several hypothetical and real life chemical reaction 

networks, including the metabolic network of the E. coli TCA cycle. 

 

Keywords: Sensitivity; Reaction network; TCA cycle; Function-free; Structural 

approach 
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1. Introduction 

 The biological functions of a cell arise from a large set of chemical reactions. 

In the living cell the reactions define an inter-connected large system, where products of 

one reaction act as reactants of other reactions. The relationship between chemicals and 

reactions of such a system are represented by a directed graph, where a node represents 

one or several species of chemicals and a reaction arrow represents a state-transition of 

chemicals. Such graphs are called chemical reaction networks.  

 The carbon metabolic system is one of the most prominent examples of 

chemical reaction networks in biology. Any living cell obtains energy by the system of 

carbon metabolites including glycolysis and the tricarboxylic acid (TCA) cycle. Indeed 

the basic structure of this network is universally shared from bacteria to higher 

organisms including vertebrates.  

 Many examples of complex chemical reaction networks are available in 

databases. They compile the quintessence of chemical reactions, which have been 

derived by the accumulation of experimental results in biochemistry. On the other hand, 

the dynamics resulting from, and encoded in, such complex network systems is not 

understood sufficiently.  

 One possible experimental method to understand the dynamics of such systems 

examines their "sensitivity": each enzyme mediating a reaction in the system is 

increased/decreased or knocked out separately, and the responses in concentrations of 

chemicals or their fluxes are observed. One recent experimental approach to the 

behavior of metabolic network, as a whole, is called metabolome analysis: the 

concentration response of a large number of (species of) chemicals in a system is 

measured, simultaneously and quantitatively, by mass spectrometry. From such 
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perturbation sensitivity analysis, reseachers have tried to derive some properties of the 

systems. However, the responses of metabolic networks in such perturbation 

experiments seem difficult to understand.  

 For example, Ishii et al (2007) examined the sensitivity responses of the carbon 

metabolite network of E. coli towards a knockout, separately, of many enzymes in the 

system. For each knockout strain of about one third of the known enzymes they 

measured many metabolites included in the system. Surprisingly, a large percentage of 

the chemical species did not show any significant response to many knockout 

experiments. In addition, some responses turned out rather ''counter-intuitive". For 

example, one of the largest response among all chemicals in all experiments was an 

increase of the concentration of a chemical which was a "reactant" of the perturbed 

reaction, i.e. an input chemical of the perturbed reaction, upward in the directed graph. 

The other largest response was the increase of a chemical which was on the side branch 

of the perturbed pathway. The authors concluded that the carbon metabolite system is 

robust. The experimental sensitivity results suggested, it was speculated, that the system 

might possess as yet unidentified bypass reactions.  

 In the following we develop a method to determine the sensitivity responses of 

chemical reaction networks towards perturbations of any reaction in the system, in a 

structural manner. We determine the qualitative change in the concentration of 

chemicals in the system from information on the reaction network, only, without any 

assumptions on either the specific functions modelling the reactions, or their reaction 

parameters.  

 There are some studies to analyze sensitivity of chemical reaction networks. 

Kacser and Burns (1973) and Heinrich and Rapoport (1974) independently proposed a 
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mathematical idea, which has been called "metabolic control analysis" later (Fell, 1992; 

Stephanopoulos et al., 1998). The analysis provides a mathematical framework to 

determine the sensitivity of a single pathway of chemical reactions and of some cases of 

branched system. This metabolic control analysis has been applied to some examples of 

small chemical reaction networks. We will present a different, and simpler, 

mathematical framework which enables us to calculate the sensitivity of large systems. 

We study the sensitivity by a structural approach and determine the relation between the 

structure of the network and the sensitivity responses of the system. We observe that 

some chemicals are not susceptible to certain perturbations, and we determine such 

chemicals from the network structure, only.  

 In spirit, though not in technical detail, our approach is influenced by 

Feinberg's ground breaking analysis of mass action kinetics in networks of low 

deficiency. See for example Feinberg (1995) and the many earlier references there, as 

well as the recent generalizations by Shinar and Feinberg (2013). Our sensitivity 

analysis, however, is not limited to reaction rates of mass action type and is not 

concerned with steady state multiplicity. On the other hand, we only study the steady 

state response to rate perturbations and not the global dynamics of the network. Low 

Feinberg deficiency greatly simplifies our network analysis, as well, but is violated by 

many biological relevant networks such as the TCA cycle of section 5 below. 

 Pallson (2005) proposed flux balance analysis and discussed some conditions 

on fluxes at steady state. For example, the maximum yield of fluxes was calculated by 

linear programming. His setting provides conditions on reaction fluxes at steady state. 

However, it is difficult to measure the fluxes of reactions in real biological systems.  

 In modern biology we have large data bases on networks. But it remains 
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difficult to determine complete quantitative details of the dynamics, including the types 

of reaction functions, reaction parameters, or initial states. This renders any numerical 

simulation grossly unreliable. As a viable alternative, our structural approach provides a 

mathematical analysis of real life biological network systems which are expected to 

include many unknown reaction functions or reaction rate parameters.  

 

2. Mathematical formulation 

 We study systems of ordinary differential equations (ODE) of the following 

form: 

 

 
d

S
dt

=x w .      (1.a) 

 

Here ( )m m
x

Î
=

M
x  is a vector of concentrations mx  of chemicals, ( )j jw

Î
=

E
w  is a 

vector of fluxes, and : E MS    is a stoichiometric matrix. The sets 

{ }1, ,M=M   and { }1, ,E=E   denote the species of chemicals and enumerate 

their reactions, respectively. Following Feinberg (1995), the stoichiometric matrix S  

arises as follow. Each reaction j Î E  is conventionally denoted as 

 

 1 1 1 1
j j j j

M M M My X y X y X y X+ +  + +     (1.b) 

 

with suitable nonnegative real coefficient vectors ,j j My y Î  . Here j
my  and j

my  

indicate how many molecules mX  are consumed by reaction j , as reactants, and 

appear as products, respectively. Usually the vectors ,j jy y  are nonnegative integer, 
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although nonnegative real components are equally acceptable. The concentration of 

mX  is denoted by mx . The stoichiometric matrix S  is defined by  

 

 ( ): j j
j

j

S w y y
Î

= -å
E

w      (1.c) 

 

for any vector E
+Îw   of strictly positive real components. The case 0jy = , alias the 

reaction 0 jy , describes a constant feed reaction which does not consume any mX . 

Similarly, 0jy   denotes a reaction towards some final products which do not enter 

as reactants and are therefore omitted in the list 1, , MX X  of participating chemicals.  

 In the ODE (1.a), accordingly, the flux jw  is assumed to only depend on those 

reactants mx  for which the stoichiometric input coefficient j
my  is strictly positive. 

More precisely, we assume throughout this paper, that the positive reaction rates jw  

satisfy 

 

 
0,

: 0 0,
m

j

j
jm x j m

w

r w y

>

= ¶ >  >
      (1.d) 

 

for all j Î E  and all m ÎM , and for all positive concentration vectors x . Clearly 

this monotonicity assumption holds for mass action and Michaelis-Menten type 

kinetics, as well as many variants, independently of their specific reaction parameter. In 

this sense we call our approach "structural". It is reasonable to assume such 

monotonicity of chemical reaction functions because non-monotonic reaction functions 

have been hardly observed in biochemistry.  
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 In the present sensitivity analysis we only study the equilibrium response to 

arbitrary perturbations of the reactions ( ),j j jw w k= x . We represent this perturbation 

by (implicit) differentiation with respect to a (formal) reaction parameter jk . For a 

precise mathematical formulation and complete technical details we refer to the 

accompanying mathematical presentation in Fiedler and Mochizuki (2014).  

 By definition, the left-hand-side of (1) is equal to 0 at the equilibrium. Thus the 

flux *w  at equilibrium is in the kernel space of S , i.e. * 0S =w . Let *dw  denote 

the total change of the flux at equilibrium caused by a small perturbation of the formal 

reaction parameter *jk . Then *dw  satisfies the equilibrium condition (1):  

 

  * 0S w  .      (2) 

 

Let *j Î E  indicate the perturbed reaction rate parameter *jk . Implicit differentiation 

of (2) with respect to *jk  then implies 

 

 *

*

0j j j
m

j m

w w
S x

k x
d

é ùæ ö æ ö÷ç ÷æ öê úç÷ ÷ç ç ÷ç÷ ÷ê úç ÷ç÷ ç÷¶ ¶ç ÷÷ ç ç÷ê ú÷ç ÷ ç ÷ç+ =÷÷ç ÷ê úç ç ÷÷ç ÷ç¶ ¶ ÷ç÷ ÷ê úç ç ÷÷ ç÷ç ÷ç÷ ÷çê ú÷è øç ÷ ç ÷ç÷ç è øê úè øë û

.   (3) 

 

Here *
*:j

m m jx x kd = ¶ ¶  denotes the response sensitivity of the equilibrium 

concentration mx , i.e. the total change of the concentration of chemical mX  caused by 



-9- 

a perturbation of the formal reaction parameter *jk . The decomposed flux change *dw  

has two terms: the direct change of fluxes *j jw k¶ ¶  by the perturbation of *jk , and 

the changes of fluxes caused indirectly through the resulting changes *j
mxd  in 

equilibrium concentrations mx . The indirect change is the product of a matrix 

( )j mw x¶ ¶ , which we call dependence matrix, and the change *j
mxd  in the 

concentration of chemicals mX  in the system.  

 The elements of the dependence matrix are given symbolically by parameters 

jmr . By our assumption (1.d) we have the alternative:  

 

 0j
jm

m

w
r

x

¶
= >

¶
: the flux of reaction j  increases with concentration mx ,  

 because 0j
my > ; or  

 0j

m

w

x

¶
=

¶
: the flux of reaction j  does not depend on the concentration mx ,  

 because 0j
my = . 

 

Since the stoichiometric coefficients 0j
my   are nonnegative, this alternative exhausts 

all possibilities.  

 In the present paper the nonzero elements 0j mw x¶ ¶ ¹  of the dependence 

matrix indicate the reactant mX  of reaction j , and they are always assumed positive. 

However, our method generalize to the case that the flux function jw  depends not only 

on the reactants but also on the products or other regulator chemicals. We can generalize 

the dependence matrix to arbitrary influences of chemical mX  on the reaction j . In 
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particular nonzero elements may be negative ( 0j mw x¶ ¶ < ) to express a suppressive 

regulation of reaction j  by mX .  

 We obtain the response sensitivity *j
mxd  of (3) in symbolic form, for any given 

perturbation *j jw k¶ ¶  and the symbolically given dependencies ( ) ( )j m jmw x r¶ ¶ = . 

In some cases the response sensitivity *j
mxd  will turn out to be identically zero: the 

chemical mX  is insensitive to a rate perturbation of reaction *j . In other cases the 

sign of *j
mxd  may be determined even in the symbolic solution. In such cases we can 

determine the qualitative sensitivity response of the concentration mx  of chemical mX  

to the given perturbation of *jk  independently of any quantitative detail of the reaction 

functions or their parameters. Specifically, mx  may be predicted to increase or 

decrease in response to an increase of the rate parameter *jk , depending on the 

determined sign of *j
mxd .  

 Here we introduce a systematic method for the rate sensitivity of chemical 

reaction networks. Our method is based on a symbolic matrix which is determined from 

the structure of network directly. In the next argument we assume the following 

nondegeneracy of the network:  

 

 ( )range ker E
jmr S+ =  .     (4) 

 

See Fiedler and Mochizuki (2014) for a detailed discussion.  

 The equations (2), (3) can then be rewritten as  
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 * *

1*

K
j j j j

m k k
kj m

w w
x c

k x
d d m

=

æ ö æ ö÷ç ÷æ ö æ öç÷ ÷ç ç ÷ ÷ç ç÷ ÷ç ÷ ÷ç÷ ç ç÷¶ ¶ç ÷ ÷÷ ç ç ç÷ ÷ ÷ç ÷ ç ÷ç ç= + =÷ ÷÷ç ÷ç ç ç÷ ÷÷ç ÷ç¶ ¶ ÷ ÷ç ç÷ ÷ç ç ÷ ÷÷ ç ç÷ç ÷ ÷ç÷ ÷ ÷ç ç÷è ø è øç ÷ ç ÷ç÷ç è øè ø

åw .   (5) 

 

Here the basis vectors ( )jk k j
c

Î
=

E
c , { }1, ,k KÎ =K   span the K -dimensional 

kernel of the stoichiometric matrix S , and km Î   denote their coefficients. If we 

consider a response *j
mxd  of chemical mX  to the normalized perturbation 

* * 1j jw k¶ ¶ =  of reaction *j Î E , equation (5) takes the form 

 

 
*

*

j
mj

k j
km

xw
e

x

d
m

æ öæ ö¶ ÷ç÷ç ÷ç÷- =-ç ÷÷ç ÷ç ÷ç¶ ç ÷è øè ø
c      (6) 

 

in block matrix notation. More explicitly  

 

 

1

1 11 1
1

1

*

1

1
1

K
M

M
j

E E EE
K

M
K

x

w w
c c

x x
x

e

w w
c c

x x

d

d
m

m

æ ö÷ç ÷æ öç ÷÷ç ç¶ ¶ ÷÷ç ç ÷÷- -ç ç ÷÷ ÷ç ç÷¶ ¶ ÷ç ç÷ ÷÷ç ç ÷÷ç ç ÷÷ = -ç ç ÷÷ç ç ÷÷ ÷ç ç÷ ÷ç ç÷ ÷¶ ÷ç ç¶ ÷÷ç ç ÷- - ÷ç ç ÷÷ç ÷ç ÷¶ ¶è ø ÷ç ÷÷çè ø

 

 

,  (7) 

 

where ( )* *j j je w k= ¶ ¶  is the *j -th unit vector in E . In the following the block 

matrix  
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 j
k

m

w

x

æ ö¶ ÷ç ÷= -ç ÷ç ÷ç¶è ø
A c       (8) 

 

will be called the augmented matrix or the A -matrix. The square E E´  sensitivity 

matrix S  of a system to the normalized perturbation of reaction *j Î E  is given by 

the negative inverse matrix of A  as:  

 

 

1
1 1

1

1

1
1 1

1

:

E

E
M M

E

E
K K

x x

x x

d d

d d

m m

m m

-

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷= =-÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷÷çè ø

S A



 





 



.     (9) 

 

The columns { }* 1, ,j EÎ =E   of S  indicate perturbed reactions. By (6), row 

{ }1, ,m MÎ =M   collects the sensitivity responses *j
mxd , *j ÎE , of all chemicals 

mX . Responses of fluxes to a normalized perturbation of the reaction rate *jk  are 

represented by the coefficient column *j
km , 1, ,k K=  , in the bottom part of the 

sensitivity matrix S . Indeed *j
km  are the coefficients of the basis vectors kc  of the 

kernel kerS  of the stoichiometric matrix S , in our expression (5) for the total flux 

change *dw  caused by a normalized perturbation of the reaction rate *jk .  

 Consider the E E´  flux sensitivity matrix F  with columns *dw , 
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{ }1, ,j EÎ =E  . Then F  is given explicitly by the basis kc , coefficients j
km  in (9) 

and, respectively, the dependence matrix ( ) ( )= jm j mr w x= ¶ ¶R  and the 

concentration sensitivities j
mxd  in (9) as:  

 

 ( )

1
1 1

1

: id

E

E E jm

E
M M

x x

r

x x

d d

d d

´

æ ö÷ç ÷ç ÷ç ÷ç ÷F = + ç ÷÷ç ÷ç ÷ç ÷ç ÷÷çè ø



 



 

   ( )( )k km= c  

   

1 1 1
1 1 1

1
1

E
K

E E E
K K K

c c

c c

m m

m m

æ öæ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷= ç ç÷ ÷÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè øè ø

 

   

 

 .   (10) 

 

 The equation (3) is linear, and the concentration sensitivity *j
mxd  is the partial 

derivative *m jx k¶ ¶  of the equilibrium concentration with respect to the reaction rate 

parameter *jk . This means that the obtained solution *j
mxd  is the response of chemical 

mX  to a small disturbance of the formal parameter *jk  of reaction *j . Suppose  

*
*

j
m m jx x kd = ¶ ¶  is zero, or the nonzero sign does not depend on the concentration 

vector x . Then we can apply the same result to large disturbances as well. In particular 

our result extend to global perturbations like knock-out experiments for such *j
mxd . The 

same statement holds true whenever we encounter a definite zero or nonzero sign of the 

response *j
mxd , independently of the specific partial derivatives 0jmr ³  in (1.d).  
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3. Examples 

 In this section we discuss several examples to illustrate the scope of our 

function-free approach to sensitivity analysis. The examples 3-1 of single pathways, and 

3-2 of a single loop feedback circuit, are networks of monomolecular reactions: any 

reaction j  is driven by only one input reactant. Monomolecular networks are also 

studied in Fiedler and Mochizuki (2014), from a more general mathematical view point. 

Example 3-3, in contrast, contains a bi-molecular reaction and is not addressed in 

Fiedler and Mochizuki (2014).  

 

3-1. Single pathway 

 As our first example we consider a single reaction pathway which does not 

include any branches; see Figure 1. The A -matrix is given as 

 

 
2

3

4

0 0 0 1

0 0 1

0 0 1

0 0 1

A

B

C

r

r

r

-æ ö÷ç ÷ç ÷ç ÷-ç ÷ç ÷÷ç= ÷ç - ÷ç ÷ç ÷ç ÷ç ÷- ÷çè ø

A ,     (11) 

 

where 2Ar , 3Br , 4Cr  are positive constants reflecting the dependence of reactions on 

chemicals. Here { }, ,A B C=M , 3M = , { }1,2, 3, 4=E , 4E = . The sensitivity 

S  is given in (9) as the negative inverse matrix of A , 

 



-15- 

 

2 2

3 3

4 4

1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0

A A

B B

C C

r r

r r

r r

-æ ö÷ç ÷ç ÷ç ÷-ç ÷ç ÷÷ç= ÷ç - ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷çè ø

S  .    (12) 

 

The columns indicate perturbed reactions * 1, , 4j =  , and the rows indicate the 

responses Axd , Bxd , Cxd  of chemical concentrations (first three rows) and of the 

flux (last row). The result shows that the flux changes if, and only if, the top reaction 1 

(input to the system) is perturbed. Then all chemical concentrations in the system 

increase, accordingly. When reactions 2, 3 or 4 are perturbed, however, only the input 

reactant chemical of the perturbed reaction changes. There is no change in any other 

chemical concentrations and fluxes. We understand this result easily: a suitable decrease 

in the upstream chemical reactant concentration compensates for the increase in the 

reaction rate of its reaction. This buffering effect prevents the perturbation to propagate 

beyond its original locus, either downward or upward. We calculated the equilibria of 

the single pathway by numerical simulations for several reaction functions. Of course, 

these simulations all confirmed our mathematical result.  

 A complete knock out of one enzyme, e.g. like 2 0Ar  , produces a singular 

situation with Axd +¥ , of course. Indeed chemical A then possesses input, but 

cannot react further. In this case we consider our results as remaining valid in the limit 

of arbitrarily small, but positive, rates 2Ar .  

 

3-2. Feedback circuit 
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 Our second example is the small network shown in Fig. 2. It consists of 6 

reactions and 4 chemicals, including one feedback loop via one side branch. The A -

matrix is given as: 

 

 

2

3

4

5

6

0 0 0 0 1 0

0 0 0 1 1

0 0 0 1 1

0 0 0 0 1

0 0 0 0 1

0 0 0 1 0

A

B

C

D

C

r

r

r

r

r

-æ ö÷ç ÷ç ÷ç ÷- -ç ÷ç ÷÷ç ÷ç - - ÷ç ÷ç ÷ç= ÷ç ÷- ÷ç ÷ç ÷ç ÷ç ÷-ç ÷ç ÷÷ç ÷ç - ÷÷çè ø

A  .   (13) 

 

The inverse of the A -matrix gives sensitivity, responses of chemical concentrations 

and of fluxes to the perturbations as:  

 

 

( )

( )
4 6 2 6 2 2 4 2 6

4 6 3 6 3 3 4 3 6

6 6

4 5 6 5 5 4 5 6

4 6 4 6

1 0 1 0

0 1 1 0

1 0 0 0 0 1

0 0 1 1

1 0 0 0 0 0

0 0 1 0

C C A C A A C A C

C C B C B B C B C

C C

C D C D D C D C

C C C C

r r r r r r r r r

r r r r r r r r r

r r

r r r r r r r r

r r r r

æ ö+ - - ÷ç ÷ç ÷ç ÷ç ÷+ - -ç ÷÷ç ÷ç ÷ç - ÷ç ÷ç ÷= ç ÷÷ç - - ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç - ÷çè ø

S . 

        (14) 

 

The columns indicate the perturbed reactions * 1, ,6j =  . The rows indicate the 

sensitivity response of the chemical concentrations A, B , C , D  (first four rows) 

and of fluxes (last two rows). Again, only a change of the top feed reaction 1w  is able 

to simultaneously affect all chemicals and fluxes. See Fig. 2a. Reactions *j =2, 3, 5 

are buffered by their input reactants A, B , D , respectively, and their perturbations 
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do not propagate further in the network; see Fig. 2b, c, e.  

 Let us compare the remaining results of perturbations to reaction *j =4 

(fourth column, Fig. 2d) and *j =6 (last column, Fig. 2f). A large part of the network 

is affected by the increase of the reaction constant of reaction 4 as shown in Fig. 2d. We 

may easily interpret the result: the chemical concentrations D , A, B  along the 

reaction cycle 4, 5, 2, 3 downward of the perturbed reaction 4w  simply increase, along 

with the fluxes of these reactions. We also observe changes in a large part of the 

network when reaction *j =6 is perturbed, as shown in Fig. 2f. This time, however, 

the changes in concentrations do not appear in the chemical concentrations further 

downstream, but in the side branch cycle 4, 5, 2, 3 of the perturbed reaction. Also, the 

signs of concentration and flux changes are reversed from Fig. 2d to 2f. In other words, 

the signs of the sensitivity response of the system are asymmetric, even though the 

perturbations are applied to each of the two reaction branches *j =4, 6 which emanate 

symmetrically from chemical C .  

 To understand the sensitivity response of chemical reaction networks, we 

discuss two different restrictions on the chemical reaction system at equilibrium. The 

first restriction is the flux balance, i.e. the total influx should be equal to the total 

outflux at each of the chemicals in the system. This Kirchhoff balance implies that the 

fluxes along a single pathway without branching should be the same everywhere. We 

may call this the "restriction along pathways". The second restriction appears at a 

branching node of a reaction network, where multiple directed reaction edges emanate 

from a single node. Any change in the concentration of that single chemical will affect 

all branching pathways simultaneously. We may call this condition "restriction at 

branching pathways". We can describe and understand some characteristic behavior of 
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sensitivity in chemical reaction networks by these restrictions.  

 In Fig. 2f, for example, the concentration of chemical C  decreases by the 

perturbation to reaction *j =6. This is understood as a compensation to keep the 

output flow ( 6w  of reaction 6) at the same level as the unchanged feed flow 1w  

(restriction along the vertical pathways). On the other hand, any change in chemical C  

spreads to the second branch, reaction 4, which emanates from C . Thus the flux and 

concentrations in the feedback loop decrease, by the restriction at branching pathways, 

as a side effect of the decrease of Cx  which, in turn, buffers the output flow 6w  to 

remain unchanged in spite of the externally applied perturbation.  

 

3-3. Hypothetical system 

 Our method applies to arbitrary chemical reaction networks. Consider the 

hypothetical network in Figure 3. Our previous examples 3-1 and 3-2 have been 

monomolecular, i.e. 0j
my >  held true for at most one unique "mother" reactant mX  

of any reaction j Î E . Now, in contrast, reaction 10 is bi-molecular: G H I+   in 

the notation of (1.b).  The A -matrix for the network is shown in (15).  
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1 2 3 4 5

3

4

5

6

7

8

9

10

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0

A

B

C

C

D

F

E

F

A B C D E F G H I J

r

r

r

r

r

r

r

r

- -

- -

- -

- -

- -

- -

- - -
=
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        (15) 

 

We can see that the dependence matrix ( )jmr  with { }1,2, ,15j Î =E  , 15E =  

and { }, ,m A JÎ =M  , 10M = , is sparse: only a few entries jmr  are nonzero. The 

symbolic sensitivity response matrix S  of (9) is the negative inverse of the above A -

matrix:  
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        (16) 

 

where  

 

( ) 1

1 3 4 5 7 5 9 5 11 5 11 12 14 15 5diag , , , , ,1, , , , ,1,1, ,1,1A B C D C E C G C G H I J CD r r r r r r r r r r r r r r
-

= , 

( ) 1

2 10 13 10 13 10 13 10 13diag 2 ,2 ,1,1,1,1,1,1,1, 2 ,1,1, 2 ,1,1F F F F F F F FD r r r r r r r r
-= + + + + , 

and ( ) ( )1 8 5 6 6 10 13F C C C F FR r r r r r r= + + + , ( )( )2 5 6 8 10C C F FR r r r r= + - , 

( )( )8 5 6 8 132C C F FR r r r r= + + .        (17) 

 

As before, the 15 columns *j  indicates the perturbed reactions from reaction for 

* 1, ,15j =  . The rows indicate the responses of chemicals A, …, J  (first 10 rows) 

and fluxes (last 5 rows). If we discuss only the signs of the changes *j
mxd  in chemical 

concentrations and km  of the fluxes kc , we can rewrite the sensitivity matrix S  as 

follows:  
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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       (18) 

 

Here the sign (+, −, 0) indicates that the chemical concentration mx  (or the flux 

coefficient km ) increases, decreases or remains unaffected, by the corresponding 

perturbation *j  (increase of the reaction coefficient *jk ). Some entries have the " " 

mark, which indicates that the change of the concentration (or of the flux coefficient) is 

typically nonzero, but the response sign (+ or −) cannot be determined from the 

structure of the network alone. Rather, that sign depends on the specific values of the 

partial derivatives 0jmr >  at the equilibrium under consideration. The indeterminacy 

signs   are not independent of each other; some of them can be seen to flip in 
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synchrony, or in a certain order, from the full symbolic form (16) of the sensitivity 

matrix S .  

 Figure 3 shows some examples of changes *j
mxd  in concentrations of 

chemicals mX  due to the perturbation of select reactions *j . Fig. 3a addresses the 

case * 5j =  where chemicals on the side-branch cycle 'j =6, 9, 11 of the perturbed 

reaction *j  decrease their concentrations. This follows because 3 0m <  is the only 

flux responses to * 5j =  in (18), and because 'j =6, 9, 11 is the cycle 3c  of the 

third last column of the A -matrix in (15). Mediated by this effect on the side-branch 

cycle 'j =6, 9, 11, a perturbation of * 5j =  also affects both reactants G , H  of 

the only bimolecular reaction j =12. However, the reactant concentrations change in 

opposite directions such that their effect on the bimolecular reaction flux at j =12 

cancels. In Fig. 3f the bimolecular reaction * 12j = : G H I+   itself is perturbed. 

Remarkably, and quite asymmetrically, only one of the two reactant chemicals G , H  

changes its concentration by the perturbation of this bimolecular reaction. In Fig. 3c, the 

chemicals E , G , C  and the fluxes on the reaction cycle 'j =9, 11, 6 of 3c  

directly downstream of the perturbed reaction * 8j =  increase by the perturbation. 

The perturbation also propagates downstream reaction through the alternative flux cycle 

'j =9, 11, 5, 7, 8 of 3 4+c c  with chemicals E , G , C , D . However, the input 

reactant F  of the perturbed reaction * 8j =  itself remains unchanged.  

 We also examined these predictions of equilibrium sensitivity by computer 

simulations using hypothetically given reaction functions and parameter values. We 

confirmed that the changes *j
mxd  in the concentration of all chemicals mX  at 
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equilibrium always follow the above predictions, independently of the chosen reaction 

functions and their parameter values.  

 

4. Analysis of the response pattern 

 The responses to perturbations of reaction rates *jk  in chemical reaction 

networks exhibit characteristic patterns related to the structure of the network. We 

analyze the response patterns in two different ways, based on the local network 

structures, and on the global flux patterns.  

4-1. Patterns determined from local structures of networks (Motif rules) 

 The rate sensitivities of some local structures of networks are determined a 

priori from the A -matrix. Such responses are summarized as "rules of sensitivity". 

They derive from local structures of chemical reaction networks as follows.  

(1) single pathway without branching; Fig. 4 (1) 

 Let a perturbation be induced into reaction *j . Assume that the unique 

"mother" reactant *m  possesses no other output arrow *j j¹  on the network. In 

other words, reaction *j  is a "single child" of *m . Then the sensitivity response of 

the system is confined to the concentration change *j
mxd  of the reactant *m  of the 

perturbed reaction *j . Neither do the fluxes change in any reaction in the network, nor 

do any other concentrations. The normalized increase in the reaction constant of *jk  is 

fully compensated by a decrease *
* * *1 0j
m j mx rd =- <  in the concentration of the 

reactant chemical *mX . See also Fiedler and Mochizuki (2014), equation (1.19). 

Example 3-1 and the results of perturbations to reactions *j =2, 3, 5 in example 3-2, 

and to *j =3, 4, 7, 9, 14, 15 in example 3-3 are explained by this rule. We emphasize 



-24- 

that this rule requires the perturbed reaction *j  to possess a mother reactant *m . 

Perturbations to feed reactions *j  of the form *0 jy , i.e. with * 0jy = , cannot be 

compensated by any chemicals. Instead multiple nonzero responses of chemical 

concentrations and fluxes may ensue downstream; see the results of perturbations to 

reactions 1 in example 3-1, 3-2, and to reactions 1 and 2 in example 3-3.  

(2) branching; Fig. 4 (2-1) and (2-2) 

 From the above we derive another rule (2) which complements rule (1). 

Besides the case of perturbation to top feed reactions, we will observe multiple nonzero 

responses of chemical concentrations and fluxes only when *j  is not a single child. In 

other words, a perturbation is induced into a reaction *j  of an input reactant *m  

with multiple output arrows. We now consider the simplest case of two output arrows. 

The sensitivity responses of the system may then be asymmetric with respect to the 

perturbed output arrows at *m , depending on the global structure of the network. We 

will observe (2-1): responses in the chemical concentrations directly downward of the 

perturbed reaction *j , or (2-2): responses in the chemical concentrations of a side 

branch *j j¹  of the perturbed reaction. In either case the patterns of concentration 

and flux responses coincide, albeit with opposite signs. 

 The results of perturbations to reactions *j =4 and to *j =6 in example 3-2 

are explained by (2-1) and (2-2), respectively; see Fig. 2d and 2f. See also the examples 

in Fiedler and Mochizuki (2014), (6.1) -- (6.4). The local structure of the network is not 

sufficient to determine which type of response the system will observe. The global 

response patterns of concentrations and fluxes in the network are related to the basis 

vectors kc  spanning the kernel of the stoichiometric matrix S , as we will discuss 

later.  
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(3) bimolecular reactions; Fig. 4 (3) 

 Consider a case where two chemicals *m , *n  are input reactants of a 

bimolecular reaction 2: * *m n p+  , such that *n  contributes input only to this 

bimolecular reaction, whereas reactant *m  possesses exactly one and only one other 

child reaction, 1, which is not necessarily monomolecular. Hence *m  also figures as 

input reactant to reaction 1.  

 (3-1): If the reaction rate of the bimolecular reaction *j =2 is increased, then 

only the concentration of chemical *n  will decrease, to buffer the reaction flux 2w . 

All fluxes and all other concentrations remain unchanged. The result of perturbations to 

reaction *j =12 in example 3-3 can be explained by this rule; see Fig. 3f.  

 (3-2): If the reaction rate of the other output arrow *j =1 of chemical *m  is 

increased, then the concentration of *m  will decrease and that of the counterpart *n  

of the bimolecular reaction 2 will increase. The two reactant concentration changes 

* *0m nx xd d< <  will act in opposite directions. Again, there is no change of any flux 

or of any other concentration in the network. Indeed, the decrease in the reactant *m  

compensates and buffers the increase in the perturbed reaction rate *j =1. The 

increase of the other reactant chemical *n  compensates for the decrease of the 

reactant *m  such that the flux of the bimolecular reaction 2 also remains unchanged. 

The result of perturbations to reaction *j =11 in example 3-3 is explained by this rule; 

see Fig. 3e.  

(4) reversible reactions; Fig. 4 (4) 

 Consider a case where two chemicals *m , *n  are involved in a reversible 

reaction  : * *m n« . Let the chemical *m  be the input reactant of the forward 

reaction +: * *m n . Similarly B  is the input reactant of the backward reaction  : 
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* *n m . We also assume that *m  contributes as input reactant to another reaction 

2: *m p , but the other chemical *n  does not contribute as input to any other 

reactions. (4-1): If the reaction rate k  of any one of the reversible reactions   is 

perturbed, then only *nxd  will be nonzero. The direction of change depends on the 

direction of the perturbed reactions: * 0nxd >  when the reaction rate k  is 

increased, respectively. However, neither *mx  nor the concentration of any other 

chemical will change. Likewise, any fluxes remain unchanged.  

 (4-2): When we increase the reaction rate 2k  of the other, irreversible output 

arrow of reactant *m , then the concentration of *mx  will decrease, to compensate. At 

the same time the other reactant *n  of the reversible reaction will decrease, 

accordingly. Note that reactants *m , *n  will both change in the same direction: 

* 0mxd <  and * 0nxd < . Again we encounter two compensating concentration 

changes. The net flux of the reversible reactions w  remains unchanged: 

0w wd d+ -- = , with 0w wd d+ -= < . All remaining fluxes remain unchanged. 

 The response rules (1), (3) and (4) are proved from the patterns of nonzero 

entries in the A -matrix. See Appendix A. We note some similarity between rules (3) 

and (4), i.e. the flux and concentration sensitivity responses to perturbations involving 

bimolecular reactions and reversible loops are closely related, and neither propagates 

into the remaining network.  

 

4-2. Analysis of global patterns of flux responses  

 The flux sensitivity is given by (10) as ( ) ( ): id j
jm kr x cd mF = + = . We 

analyzed the patterns of flux responses in the system given by the distribution of 
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nonzero entries in the sensitivity matrix S . For example, the flux sensitivity F  of the 

network shown in Figure 3 is:  

 

( ) ( ) ( ) ( )
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         (19) 

 

where ( )1 1 1
1 3 3 3diag 1,1,1,1,1, ,1,1, ,1, ,1,1,1,1C C CD r r r- - -= , this time, and 2D , 1R , 2R  

and 8R  were defined in (17). The column *j  and row 'j  indicates the response 

' *j jF  of flux 'j  to a perturbation of reaction *j . If we distinguish zero and nonzero 

flux responses, only, we obtain the following sparse pattern of nonzero entries: 
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        (19') 

 

Here "*" denotes any nonzero entry ' *j jF  of the flux response matrix F . Zero entries 

are omitted, for legibility.  

 There are only six different column patterns of nonzero entries among the 15 

columns of the flux response matrix F , in our example. For example, an input 

perturbation in any of the columns { }* 3, 4,7, 9,11,12,14,15j Î  produces an empty set 

{ }'j Î  of nonzero flux responses ' *j jF = * . In other words, these columns *j  of 

the flux response matrix F  are identically zero. We abbreviate this inputoutput 

response patterns as {3, 4, 7, 9, 11, 12, 14, 15}{}. Hence the inputoutput patterns 
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are the following: {3, 4, 7, 9, 11, 12, 14, 15}{}, {5, 6}{6, 9, 11}, {8}{5, 6, …, 

9, 11}, {10, 13}{5, …, 15}, {1}{1, 3, 5, …, 15}, {2}{2, 4,…, 15}. Note that 

any output patterns in our list is strictly contained in all subsequent patterns, except for 

the last entry.  

 Let us now define the influence relation  

 

 * 'j j       (20) 

 

to indicate ' * 0j jF ¹ . In other words, *j  influences 'j , in symbols: * 'j j , if 

and only if a perturbation of reaction *j  causes the flux 'j  to change. Our main 

observation, in all our examples, is the transitivity of flux influence:  

 

 1 2j j   and  2 3j j   implies  1 3j j .      (21) 

 

 For monomolecular reaction networks, only, we prove transitivity of influence 

in a separate paper; see Fiedler and Mochizuki (2014), theorem 1.3. As a consequence 

of flux transitivity we are able to define the influence graph * 'j j . See Figure 5 for 

an example. The vertices of the graph are the reactions { }1, ,15j Î =E  . The 

oriented influence graph of Fig. 5 is to be read as follows. The influence 1 2j j  holds 

true if, and only if, there exists a directed path of edges " " from 1j  to 2j  in the 

influence graph. The response patterns arise as influence sets 

( ) { }' ** : ' 0j jI j j= Î F ¹E  of fixed *j Î E , i.e. as the subsets of 'j Î E  which 

are influenced by the same *j . For example there are the seven 
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{ }* 6,5,8,10,13,1,2j Î  with nonempty influence sets ( )*I j . The oriented edge 

5 6  and the self-loop 6 6  implies ( ) ( )5 6I I= . The loop 10 13 10   

implies ( ) ( )10 13I I= . This provides the five different nonempty influence sets 

( ) ( )5 6I I= , ( )8I , ( ) ( )10 13I I= , ( )1I , and ( )2I  listed above. Even though 

the influence relation itself is unique, the minimal influence graph is not. For example 

we can omit either the edge 10 8  or 13 8  to represent the same influence 

relation  .  

 In Figure 6 we provide another example to illustrate the hierarchy of flux 

responses. See also Fiedler and Mochizuki (2014), example 4 in section 6. The network 

includes a single vertical pathway and two feedbacks. This results in three cycles in the 

network, which produce the three basis vectors for the kernel kerS  of the 

stoichiometric matrix S . We call this basis ac , bc , cc , this time. The components of 

each kernel vector are either 0 or 1. The support of each kernel vector, i.e. the reaction 

numbers j  with nonzero components, is given by the cycles: ( )a ={1, 2, 3, 4, 5}, ( )b

={2, 3, 6, 7} and ( )c ={3, 4, 8, 9}. The input output patterns of the resulting flux 

responses are: {2, 3, 7, 9} {}, {4, 6} {2, 3, 6, 7}, {5, 8} {2, 3, 4, 6, 7, 8, 9}, {1}

 {1, 2, 3, 4, 5, 6, 7, 8, 9}. The three response patterns arise from the nontrivial 

influence sets ( )*I j , { }* 4,6, 5, 8,1j Î  via    4 6I I  and ( ) ( )5 8I I= . The 

output parts of these patterns can be understood in terms of the directed cycles ( )a , 

( )b , ( )c  as : {2, 3, 7, 9}{}, {4, 6} ( )b , {5, 8} ( ) ( )b c È , {1} ( ) ( ) ( )a b c È È .  

 In addition, we recall our motif rules (1) and (2): flux changes of networks only 

occur, when the perturbations are induced at branching outputs or at a reaction 0 jy  

here the reaction 1. We call such reactions "gates" here. The gates of our basis cycles 
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( )a , ( )b , ( )c  are {1}, {4, 6} and {5, 8}, respectively. The basis cycle ( )c ={3, 4, 8, 

9} includes the gate of basis cycle ( )b . Thus any perturbation { }* 5,8j Î  induces a 

flux change in ( )c , which in turn induces a flux change in ( )b . Similarly a 

perturbation in cycle ( )a  by its gate reaction 1 induces changes in ( )c  and ( )b  

because the gates of ( )b  and ( )c  is included in the cycle ( )a . In this way, we 

understand the hierarchy of flux pattern as hierarchy of flux responses: 

( ) ( ) ( )a c b   to be a consequence of the hierarchic relation between cycles at their 

gates.  

 

5. Metabolic network  

 As a real life application, we analyze chemical reaction system for the carbon 

metabolism in E. coli. We use a network presented in Ishii (2007), with minor 

modifications. In our example, we consider 28 metabolites and 43 reactions. The list of 

reactions and metabolites is shown in the Appendix B. The reaction network is 

illustrated in Figure 6. We constructed the A -matrix of (8) and calculated the 

sensitivity matrix S  of (9) as the negative inverse of A .  

 The chemical reaction network is large and complex. Some responses are 

understood by the motif rules as shown in Table 1. We also analyzed the patterns of flux 

responses as shown in Figure 8. Again, we observe transitivity and clear hierarchy in the 

response patterns of fluxes; see Figure 9. The analysis of flux response patterns is 

summarized and shown in colors in Fig. 7. The flux influences of perturbation *j Î E  

to nonzero responses at 'j Î E  can be simplified and summarized as follows. The 

fluxes are categorized into 6 color classes and there is a transitive hierarchical relation 

among them: "black""green", "green"{"red", "yellow", "blue"}, "red""yellow", 
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"blue""light blue". The perturbation to any reactions *j  influences all other 

members 'j  in the same class, at least, and all members of classes downward of the 

perturbed class. It turns out that the sensitivity of the carbon metabolism system 

possesses reaction sets corresponding to the subsets of the pentose phosphate pathway 

(red, yellow) and the TCA cycle (blue, light blue). The perturbation to a reaction in 

these sets influences all members in the sets, but does not influence any others. On the 

other hand a perturbation to some reactions *j  in glycolysis (green) influence almost 

all reactions in the network. We emphasize that these insights result from our 

mathematical analysis of the sensitivity matrix S  and of the flux response matrix F  

in (9), (10), only. No a priori biological knowledge of the metabolism is required, other 

than the network structure, to arrive at our conclusions.  

 Let us compare our results with a pioneering experiment for the E. coli system 

by Ishii et al, (2007). Unfortunately the experiment still lacks measurements of a large 

part of the network. We focus on some of the largest responses of measured metabolites 

among the systematic perturbation experiments. One of the largest response is an 

increase of "F6P" and "G6P" by a knockout of the enzyme pfkA mediating reaction 3: 

"F6P""F1,6P". This result is consistent with our analytical calculation: "F6P" and 

"G6P" decreases by an increase in the rate coefficient of reaction 3; see table 1, row "3" 

and column "e" and "c". We understand that this is explained by our motif rule (4-2). 

The other largest response is an increases of "Ru5P" and "R5P" by a knockout of 

enzyme rpe mediating reaction 12: "Ru5P""X5P". Again, this result is consistent 

with our analysis; see table 1, row "12" and columns "m", "o". Indeed "Ru5P" and 

"R5P" decrease by an increase in the rate coefficient of reaction 12. This result obeys 

and illustrates our motif rule (2-2).  
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6. Discussion 

 We presented a method to analyze the rate sensitivity of chemical reaction 

networks in a structural and function-free manner: a large part of the sensitivity 

responses was determined from the structure of the network alone. We introduced the 

symbolic A -matrix which is determined by the network and its stoichiometry, only. 

The A -matrix does not depend on the specific choices of reaction functions or their 

rate parameters, except for some basic monotonicity requirement (1.d). The negative 

inverse matrix of A  provides the sensitivity matrix S . See (8), (9). A system exhibits 

characteristic responses depending on the structure of the network and the position *j  

of the rate perturbation in the network. We determined some response patterns (motif 

rules) from the structure of the network and probed the network response, based on the 

A -matrix. We also analyzed patterns of nonzero responses of fluxes and discovered a 

clear hierarchy in the flux response. We analyzed some hypothetical networks and the 

complex real life network of the E. coli metabolism.  

 Our function-free structural approach makes predictions on the responses of 

chemical reaction systems, based on their network structure. The method uses 

information on the reaction network and its stoichiometric coefficients, only, to 

calculate the sensitivity. Our results do not depend on other quantitative measurements 

of the systems, like reaction rates, degradation rates, or initial concentrations of the 

metabolites. On the other hand, our knowledge of chemical reaction networks of many 

organisms is possibly incomplete, at present. We rather expect to use our theory as a 

tool to reveal unknown reactions or unknown regulations of chemical networks by 

combining theory with specific experimental measurements of sensitivity. For example, 
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we may calculate the sensitivity for hypothetical modifications which introduce, or 

omit, some reactions or regulations, and may then compare with specific experiments. If 

such modifications of a "known" network considerably enhance agreement with 

experimental results, then we may expect the modified network to actually represent the 

real systems. Disagreement, however, will falsify a network outright -- without any 

remaining excuses as to more "suitable" reaction functions or fudgy rate constants.  

 Our assumptions are of a qualitative nature. Besides positivity (1.d) and 

continuous differentiability of the reaction rates we assume some mild algebraic 

nondegeneracy of certain Jacobi matrices, to distinguish responses of zero from nonzero 

sensitivity; see (4) in Section 2. To distinguish concentration or reaction flux increase 

from decrease, we also require some monotonicity in the form of strictly positive partial 

derivatives of reaction rates with respect to their reactants; see (1.d) in Section 2. 

Although strictly negative derivatives, i.e. inhibitory next to excitatory couplings, are 

equally tractable we do not pursue this generalization here. See also our more 

mathematical inclined companion paper (Fiedler and Mochizuki, 2014) for a more 

detailed discussion of these assumptions.  

 We have developed a function-free approach to sensitivity. Nevertheless, we 

observed that the responses of chemical reaction systems follow characteristic patterns 

which only depend on the stoichiometric structure of the network. Some structures are 

shown to "buffer" the perturbation, and as a result the fluxes do not change at all (motif 

rules 1, 3, 4). The effect of a perturbation at reaction *j  may also propagate from the 

lower part to the upper part of a network through feedback reactions. See e.g. Fig. 3 and 

Fig. 6. The influence region ( )' *j I jÎ  is mediated by the kernel of the 

stoichiometric matrix S , which reflects the stoichiometric structure of the network. 
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The influence * 'j j  propagates transitively, in all our examples, and the response 

patterns follow a corresponding hierarchy. Some of these behaviors are explained 

analytically, but on an intuitive level, in this paper. We conclude that the equilibrium 

response of chemical reaction systems obeys strong restrictions as outlined in Section 3-

2. Chemical reaction systems are bound to exhibit correspondingly characteristic 

behavior.  

 We repeat that our analysis applies to large disturbances of reaction rates. Of 

course, the mathematical approach is based on the local implicit function theorem via 

partial derivatives of the reaction functions. However, we can continue to apply our 

analysis as long as these partial derivatives do not change signs, and as long as 

equilibria persist. We are not aware of any other results of comparably global scope and 

impact, except the monumental contributions by Feinberg.  

 Our method does apply, not only to pure chemical reaction systems but also, to 

systems including regulatory linkages. For example, "allosteric regulation" is an 

important topic in metabolic systems, where a product (small molecule) of a reaction 

may regulate the function of an enzyme to control, not only some other reactions, but 

even the rate of its own production. Such regulatory effects can be studied by 

integrating additional nonzero entries in the dependence matrix.  

 On the other hand, there are limitations to our method. We need to assume the 

existence of equilibria because our method only determines the response of systems 

near an equilibrium. We have to examine existence of equilibrium separately by other 

methods. For some advanced uniqueness and multiplicity results see Feinberg (1995), 

Shinar and Feinberg (2013). In particular, some networks may possess multiple, 

coexisting equilibria. An entry   of the sensitivity matrix means that the sign of the 
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change *j
mx  of some focal chemical mX  cannot be determined from the network 

alone. To determine such a sign requires quantitative information on partial derivatives 

jmr  of the reaction functions. For example, the sensitivity matrix of example 3-3 

includes some   entries. However, the signs of all such terms depend on the common 

factor ( )8 10F Fr r- . This means that we obtain a sign determinate sensitivity response 

matrix just by measuring the relative magnitude of the partial derivatives of two 

reaction functions, 8w  and 10w , with respect to the single chemical F.  

 Similarly, the sign of detA  itself may already depend on quantitative 

information on the partial derivatives jmr . Indeed detA  is a polynomial of degree 

M  in these variables, jointly, where each nonvanishing term jmr  enters at most 

linearly. If all coefficients of the monomials of detA  are of the same sign 1s =  , 

then sign det 0A    because all nonvanishing jmr  are positive. However, 

different signs of the coefficients may well occur. Then detA  depends on quantitative 

information on the partial derivatives jmr . Equilibrium bifurcations may in fact be 

heralded by det 0=A , though only for an algebraic variety of codimension 1 in the 

space of nonvanishing jmr . The resulting equilibrium bifurcations, in the simplest case 

of saddle-node type, will feature both signs of det A . In particular all nonzero 

sensitivity responses mxd  and km , as well as all nonzero flux changes, will typically 

be of opposite sign on the two equilibrium branches which join at a saddle-node 

bifurcation. Still, some sign determinacy will prevail, synchronously in many entries of 

the sensitivity and flux response matrices. At present however we have not investigated 

such examples.  
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 We have introduced two analytical methods to understand sensitivity behavior. 

We can analyze the local behavior by the motif rules, and the global response by a 

hierarchy of flux response patterns. We were able to prove some motif rules analytically. 

However, our explanation of hierarchy patterns is still intuitive. Only in the 

monomolecular case, so far, we are able to prove the observed transitivity of the 

influence relation "perturbation of reaction *j  implies flux change in reaction 'j ", 

* 'j j , which underlies the hierarchy of flux response patterns and their relation to 

directed cycles in the reaction network. See Fiedler Mochizuki (2014), because the 

mathematical details are beyond the scope of our present exposition.   
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Appendix A 

 In the following we discuss the patterns of sensitivity determined from the 

"local" structure of a network. As we have shown in (9), the sensitivity matrix S  is 

given by the negative inverse of the matrix A . In other words, the entry mjs  of S , for 

chemical m ÎM  and reaction j Î E , is given by:  

 

 ( ) 11 det detj m
mj jms + + = - A A .   (A3) 

 

Here jm
A  denotes the ,j m -minor of A , which omits row j  and column m  from 

A .  

 Let us focus on row vectors of the A -matrix ( )=A R C , which 

correspond to reactions. We call the left part ( )jmr=R  and the right part ( )jkc=C  

of A  the "dependence part" and the "kernel part", respectively. Of course, the kernel 

part consists of a basis kc  of the kernel kerS  of the stoichiometric matrix S . The 

dependence part is determined by the partial derivative jmr  of the reaction functions 

jw  with respect to the metabolite concentrations mx . In the following we mainly focus 

on the nonzero entries of the dependence part.  

 

(1) single pathways without branching 

 In a reaction network, consider a chemical *mX  which has a single outgoing 

reaction arrow *j  of a monomolecular reaction. Then the *m  column vector of the 

A -matrix possesses a single nonzero entry * * 0j mr > . This entry appears in row *j , 
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as shown below.  

 

 * *

0

0 0

0

j mr

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç= ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷çè ø

CA



 



 

 

The determinant *det j m
A  of the *j m -minor *j m

A  will be 0 for all *m m¹ , 

because the *m -column of *j m
A  will be the null vector. This implies that the 

responses *j
mxd  of all chemicals *m m¹  to the perturbation of reaction *j  are 

zero. On the other hand, our assumption det 0¹A  implies 

( ) * * 1
* * * *det 1 det 0j m
j m j mr

+ -= - ¹A A . In conclusion the perturbation to reaction *j  

whose reactant *m  does not possesses any other output arrows affects only the 

reactant *m . In particular all fluxes remain unchanged.  

 

(2) bimolecular reactions 

 Suppose that reaction *j  is a bimolecular reaction *j : * *m n pX X X+  , 

and that chemical *m  contributes to one other, not necessarily monomolecular 

reaction *j j¹ . Also assume *n  is a reactant for *j , only. The corresponding A

-matrix is the following:  
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* * * *

*

0 0

0 0

0 0

0 0

j m j n

jm

r r

r

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷çè ø

CA

 





,  

 

where the kernel parts of rows *j  and j  may differ, of course.  

 From the matrix A  we derive some rules for responses to perturbations of the 

bimolecular reaction *j . First, *det 0j m
 =A  for all *m n¹ , because the *n -

column of *j m
A  vanishes. This implies that a perturbation of the bimolecular reaction 

*j  will not affect any chemicals m  other than *n . This implies that *nxd  alone 

will compensate for the perturbation *j , and therefore all fluxes will remain 

unchanged; see Fig. 4 (3-1).  

 Second consider a perturbation to reaction j , which is the other outgoing 

reaction branch from reactant chemical *m . Then det 0jm
 =A  for all 

{ }*, *m m nÏ  by linear dependence of the remaining columns *m  and *n  of 

jm
A . This means that the responses of all chemicals are zero except for the reactants 

*m  and *n  of the bimolecular reaction *j  when the perturbation is applied to the 

other side branch j  of the reactant *m . Again all flux changes vanish.  

 

(3) reversible reactions 

 Suppose that reaction j+ : * *m nX X  is reversible, and that chemical *m  
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contributes as reactant to one other reaction j . Also assume that * *n m¹  

contributes to the reverse reaction j- : * *n mX X , only.  Then the corresponding 

A -matrix takes the following shape:  

 

 

*

*

*

0 0 0

0 0

0 0 0

0

0

j m

j n

jm

r

r

r

+

-

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç= ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷÷çè ø

CA

  

 



 





,  

 

where all r -entries are positive. We derive rules (4-1) and (4-2) on the sensitivity of 

reversible reactions as follow. First, we study the basis vectors ( )jk jc ÎE
 in the kernel of 

the stoichiometric matrix S . By (1.c) they satisfy Kirchhoff's law 

 

 ( )( ) ( )
{ },

0 j j j j j j j
k k k

j j j

c c y y c y y
+ - + +

+ -Ï

= - - + -å ,  

 

for all 1 dim kerk K S£ £ = , because j jy y


=


. We may therefore choose a basis 

kc  such that  

 

 j j
k kc c
- +

= - , for 1 k K£ < , and 

 
{ }1     for     , ,

0     otherwise.            
j
K

j j j
c

+ -ìï Îïï= íïïïî
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Therefore the A -matrix above takes the more specific form 

 

 

11 1

1 1*

1 1*

*

1

0 0 0

0 0 0 1

0 0 0 1

0

0 0 0

0 0 0

M

j j
Kj m

j j
Kj n

jm

E EM

r r

r c c

r c c

r

r r

+ +

+

+ +

-

-

-

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç - - ÷ç ÷ç= ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷çè ø

A

  

    

   

   

   

   

   

  

.   

 

 Now consider a perturbation of reaction j+  and let *m n¹ . Then  

 

 det 0j m+
 =A  

 

because the column *n  of A  and the last column K  of the kernel-part C  

become linearly dependent. Therefore 0mxd =  and in particular * 0mxd = . This 

proves that the forward and backwards flux changes of the reactions j  cancel, and all 

(net) fluxes remain unchanged. Moreover * 0nxd >  and claim (4-1) is proved; see Fig. 

4 (4) left.  

 The argument for a perturbation of the reverse reaction j-  is even easier, 

because we obtain a nullvector in column *n , for det j m-
A  and any *m n¹ . Since 

*n  is a single-exit vertex, our above discussion of case (1) also applies, directly.  
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 As our final case, Fig. 4 (4) right, let us consider a perturbation of the side 

branch reaction j  of metabolite *m . For any { }*, *m m nÏ  we then obtain   

 

 det 0jm
 =A ,  

 

because the remaining columns *m  and *n  are linearly dependent with the last 

column Kc  of the kernel-part. Indeed all three columns of jm
A  now possess nonzero 

entries in only the two rows j+  and j- . This proves our final claim on reversible 

reactions.  

 

Appendix B 

 The list of the 43 reactions of the E. coli metabolism is shown below. The 

metabolites are denoted by their abbreviated names in quotation marks. The reactions 

are labeled by numbers. Forward and reverse reactions are distinguished by epithets a 

and b. For example, the first line indicates that one molecule of the reactants Glucose 

and PEP together produce one molecule G6P and one molecule PYP. Degradations of 

the three chemical products, Acetate, Lactate, Ethanol are required for equilibria of the 

dynamics to exist. We ignored these three degradations because the response of the 

system to their perturbation is obvious (motif rule 1).  

 

(1) "Glucose" + "PEP"   "G6P" + "PYR" 

(2a) "G6P"   "F6P" 

(2b) "F6P"   "G6P" 
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(3) "F6P"   "F1,6P" 

(4) "F1,6P"   "G3P" + "DHAP" 

(5) "DHAP"   "G3P" 

(6) "G3P"   "3PG" 

(7a) "3PG"   "PEP" 

(7b) "PEP"   "3PG" 

(8a) "PEP"   "PYR" 

(8b) "PYR"   "PEP" 

(9) "PYR"   "AcCoA" + "CO2" 

(10) "G6P"   "6PG" 

(11) "6PG"   "Ru5P" + "CO2" 

(12) "Ru5P"   "X5P" 

(13) "Ru5P"   "R5P" 

(14a) "X5P" + "R5P"   "G3P" + "S7P" 

(14b) "G3P" + "S7P"   "X5P" + "R5P" 

(15a) "G3P" + "S7P"   "F6P" + "E4P" 

(15b) "F6P" + "E4P"   "G3P" + "S7P" 

(16a) "X5P" + "E4P"   "F6P" + "G3P" 

(16b) "F6P" + "G3P"   "X5P" + "E4P" 

(17) "AcCoA" + "OAA"   "CIT" 

(18) "CIT"   "ICT" 

(19) "ICT"   "2-KG" + "CO2" 

(20) "2-KG"   "SUC" + "CO2" 

(21) "SUC"   "FUM" 
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(22) "FUM"   "MAL" 

(23a) "MAL"   "OAA" 

(23b) "OAA"   "MAL" 

(24a) "PEP" + "CO2"   "OAA" 

(24b) "OAA"   "PEP" + "CO2" 

(25) "MAL"   "PYR" + "CO2" 

(26) "ICT"   "SUC" + "Glyoxylate" 

(27) "Glyoxylate" + "AcCoA"   "MAL" 

(28) "6PG"   "G3P" + "PYR" 

(29) "AcCoA"   "Acetate" 

(30) "PYR"   "Lactate" 

(31) "AcCoA"   "Ethanol" 

(32) "R5P"   (degradation) 

(33) "OAA"   (degradation) 

(34) "CO2"   (degradation) 

(35) (input)   "Glucose" 
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Table 1: Sensitivity of metabolite network of E. coli.  

 

 a b c d e f g h i j k l m n o p q r s t u v w x y  

1 −                         1

2a   −  + +  +  − −       

2b   +  − −  −  + +       

3   −  − +  +  − −       

4      −                    1

5        −                  1

6       −                4

7a         −                 4

7b         +                 4

8a                      

8b                      

9                      

10   −  − −  −  + +       

11   +  + +  +  − +       

12   +  + + + +  + − −       

13   −  − − − −  − − +       

14a              −  + +         4

14b              +  − −         4

15a              −  − +         4

15b              +  + −         4
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16a              −  − −         4

16b              +  + +         4

17                      

18                   −       1

19                      

20                     −     1

21                      −    1

22                       −   1

23a                      

23b                      

24a                      

24b                      

25                      

26                      

27                         − 3

28   −  − −  −  − −       

29                      

30                      

31                      

32              + − − −         4

33                      

34                      

35   +  + + + +  + +       
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 The rows *j  and columns m  indicate perturbed reactions *j  and 

concentration responses *j
mxd  of chemicals mX , respectively. The numbers in the 

leftmost column indicate the reactions shown in Appendix B and Figure 7. The alphabet 

in the top row indicates the species of metabolites; a: "Glucose", b: "PEP", c: "G6P", d: 

"PYR", e: "F6P", f: "F1,6P", g: "G3P", h: "DHAP", i: "3PG", j: "AcCoA", k: "CO2", l: 

"6PG", m: "Ru5P", n: "X5P", o: "R5P", p: "S7P", q: "E4P", r: "OAA", s: "CIT", t: 

"ICT", u: "2-KG", v: "SUC", w: "FUM", x: "MAL", y: "Glyoxylate". The system 

includes 28 metabolites, though we omit the three products Acetate, Lactate and 

Ethanol, because they only exit the network. The sign (+, −) indicates increase or 

decrease of chemicals in response to the perturbation of the corresponding reaction. 

Zero entries indicating no change are omitted, for legibility. The " " mark indicates 

nonzero chemical concentration changes *j
mxd  to the perturbation of reaction *j , 

generically, but the sign will depend on numerical, rather than symbolic, values. The 

rightmost column indicates possible explanations by motifs; 1: motif (1), 3: motif (3) , 

4: motif (4).  
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Figure Legends 

 

Figure 1  Sensitivity analysis of a single reaction pathway of chemical reactions 

with feed 1 and exit reaction 4. (a-d) Changes in concentrations and fluxes induced by 

perturbations of reaction rates 1k  to 4k  from top (a) to bottom (d). Perturbed 

reactions * 1, , 4j =   are indicated by red triangles. Plus, minus, or zero next to 

circles indicate increase, decrease or no change in the associated concentrations of the 

chemicals , , A B C , respectively. Red bold circles and arrows indicate increases in 

concentrations and fluxes. Red dashed circles (and arrows) indicate decrease in 

concentrations (and fluxes).  

 

Figure 2  Sensitivity analysis of a simple network including one feedback. (a-f) 

Perturbed reactions are * 1, , 6j =   indicated by red triangles. Changes in 

concentrations and fluxes induced by perturbations of reaction rates 1 6, ,k k  are 

indicated. See also the legend of Fig. 1.  

 

Figure 3  Sensitivity analysis of a hypothetical network with one bimolecular 

reaction 12j = . Changes in concentrations and fluxes induced by perturbations of 

reactions *j = 5(a), 6(b), 8(c), 10(d), 11(e) and 12(f). For *j = 3, 4, 7, 9, 14, and 15, 

only the input reactants *mx  of the perturbed reaction *j  change; see section 4-1. 

The concentration responses of chemicals C, D, E, G, H, to a perturbation of reaction 

*j = 13 are indeterminate. See also the legend of Fig. 1.  

 

Figure 4  Examples of network motifs of chemical reactions and patterns of 
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sensitivity response. Legend as in Fig. 1.  

 

Figure 5  The transitive influence graph of nonzero response patterns of the 

hypothetical network shown in Fig. 3. The vertex numbers indicate reactions. Any 

directed path of arrows from *j  to 'j  indicates the direct influence from *j  to 

'j ; i.e. ' * 0j jF ¹ . The set of output responses 'j  for each input *j  is the set of 

vertices 'j  which can be reached from *j  by a directed path. For example, a 

perturbation to reaction *j = 8 causes changes in reactions 'j Î{5, 6, 7, 8, 9, 11}.  

 

Figure 6  Example of a network with two feedback cycles, (a), and the 

corresponding hierarchy of response patterns, (b). (a) The network includes one vertical 

pathway ( )a  and two feedback cycles ( )b  and ( )c . (b) The influence graph of 

nonzero response patterns of the network shown in (a). Labels and arrows are used as in 

Fig. 5.  

 

Figure 7  Reaction network of the carbon metabolism TCA cycle of E. coli. We 

omit some less important degradations which actually exist. The complete set of 

reactions is shown in Appendix B. Colors summarize the influence patterns of flux 

responses shown in Fig. 9 with some details omitted. The flux influence patterns are 

summarized as: i) yellowyellow, ii) red{red, yellow}, iii) brown{red, yellow}, 

iv) light blue light blue, v) blue{blue (including dashed blue), light blue}, vi) 

green{green (including dashed), blue, light blue, brown, red, yellow}, vii) black

{black (including dashed), green, blue, light blue, brown, red, yellow}. The differences 

of responses between perturbations to forward and backward reactions of 7 and 16 are 
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not shown. See Fig. 9 for exact patterns. 

 

Figure 8  The flux sensitivity matrix ' *j jF  of the E. coli carbon TCA cycle 

metabolism. Columns and rows indicate perturbed reactions *j  and flux responses 

'j , respectively. The enumerator of reactions follows that shown in Appendix B and 

Figure 7. The signs (+, −) indicate increase or decrease or no change of flux responses. 

Zero entries are omitted, for legibility. The "" mark indicates nonzero flux changes to 

the perturbation, generically, but the direction depends on numerical values and cannot 

be determined.  

 

Figure 9  Hierarchy of nonzero response patterns of the carbon metabolism 

network shown in Fig. 7. Labels and arrows are used in the same way as in Fig. 5 and 6. 
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Fig. 3a-c
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(1) single pathway (2-1) branching (2-2) branching

Fig. 4
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(3) bimolecular reactionFig. 4
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